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Outline

@ Setting the scene
— Scientific motivation
— Principles and observational capabilities

@AGround based demonstration
— Benchmarking against FTIR

@ Hollow waveguide integration

@ Prospects
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Scientific Drivers
Implications on the next generation of EO instruments

The Challenges of the Atmosphere

The Changing Earth

Challenge I: Understand and guantify the natural variability and the human-induced changes in the Earth's
climate system.

Challenge 2: Understand. model and forecast atmospheric composition and air quality on adequate temporal and
spatial scales. using ground-based and satellite data,

Challenge 4: Observe, monitor and understand the chemistry-dynamics coupling of the stratospheric and upper
tropospheric circulations. and the apparent changes in these circulations.

@ Finer geographical coverage
— Local/regional sampling (Air quality — Emission Monitoring)
@Naﬁnw Centre for — Global coverage at a finer scale (Climate - Feedback)

Earth Observation
@ Higher vertical resolution
— Nadir profiling P Improved SNR, improved spectral resolution

Centrefor — Limb sounding I Reduced FoV while keeping the SNR (UT/LS)
e @JQ @ Improve sensitivity
Instrumentation — Further trace species like PAN, VOCs, ...

@Compact, light
— Low cost, micro-satellites, piggybacking
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Principles of the LHR

Thermal infrared spectro-radiometry

Collects thermal radiation from
the scene
contains unique spectral
signatures from atmospheric
constituents

Transmission
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Down conversion into RF
domain
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combining <: radiation with
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\ Laser
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4

tory



Advantages of LHR for EO

Merits Figures Remote sounding benefits
=4.1016 : :
High sensitivity l(\:Ezplo;rﬁl?tleS) Detection of ultra-low concentration traces
Shot noise limited NESR = 120 nW/em-2.sr.crm-L High accuracy
Full lineshape resolution
High spectral Resolving power > 106 ) ) ) ) )
resolution Resolution down to ~10 MHz Deconvolution of altitudinal information

Interference discrimination

Set by electronic filters Highest in the thermal IR | _
Usage of spectral micro-windows

Ultrafine geographical coverage
_ _ _ 10 cm aperture gives Higher altitude resolution (limb)
High spatial resolution _ _ i
FoV = 0.13 mrad = 27 arcsec Less cloud interferences
Coherent FoV ~50 m LEO . ~4km GEO ) o ] ]
m y TAKM Localized emission before dispersion

Local sampling from GEO

Electrical definition of | Directly measureable to a high No ILS artefact
Instrument Lineshape level of accuracy ILS stability with sounding configuration
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FTIR / LHR Side by Side Comparison

ldentical resolution 60 MHz and field of view
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Retrieved Profiles Comparison
LHR vs FTS
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Getting LHR to Space

@ In space context LHR technology not mature
— Need to get to TRL 7 (In Orbit Demonstration)
— Need to built up space heritage

@ Key enablers
— Reduction in mass and volume
— Increase robustness, reduce risk
— Airborne deployment as a first step to space

P Technological solution: hollow waveguide integration
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Miniaturization / Ruggedization
Easing deployment through Hollow Waveguide integration

Hollow waveguides in ceramic _ :
@ Fully integrated optical systems

@ Compact — Robust — Lightweight

" : ‘ @ Low cost
y / @ Relaxed alignment constraints

@ Requires machining with 1 um tol.

Example of heterodyne mixing module \O d\aﬂ(\e\
integrated in Hollow Waveguide &
HIGHER STABILITY
BETTER HETERODYNE EFFICIENCY
%
QinetiQ \ %
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Active Component Integration
L_aser_& photodiode

@ Lasers and photodiodes are semiconductor chips
— Small enough for full integration

HW — Detector integration
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Concept of Fully Integrated LHR

Shoe box size with unprecedented specifications

Integrated

oplics

Integrated
QCL
Integrated
detectors
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Concept of Fully Integrated LHR

Shoe box size with unprecedented specifications

Integrated

Integrated

QCL

Integrated

detectors

Hollow

wavenuide

Ceramic
substrate

Spatial (km) | Spectral (/cm)| Noise | Weight (kg)
MIPAS 3x30 0.035 100 330
TES 0.5x0.5 0.06 100 390
HW-LHR 0.2x0.2 <0.01 200 2
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In Orbit QC-LHR Demonstrator
Example of 3U CubeSat

VHF Uplink

Integrated LHR Payload control
Input port - Integrated Optics - Altitude control system
- Collection mirror - QCL - Transmission system
- View switcher -Detector - Antenna system
- Calibration load - QCL control - Power distribution
- Detector control
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Further Prospects of Miniature LHR

Airborne

In Orbit Demo
- Step to space
- CubeSat
- UAVs - TechDemoSat
UT/LS dynamics -ESAI0D
Ozone / water - Build heritage

- HAPs
Air quality
Street resolution
Emission sourcing

- Mission Ready

- NanoSat
Constellation

Ground
- Ground network - Piggy backing
- Validation _cEo
- Lower cost

GHGs & Emissions
Subcity scale

- Planetary
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