



# A Fully Integrated, Miniaturised Quantum Cascade Laser Heterodyne Radiometer for EO

### Damien Weidmann, Rebecca Rose, Mike Jenkins

HOLLOWGUIDE LTD





# Outline

**Ø** Setting the scene Scientific motivation Principles and observational capabilities **Ø**Ground based demonstration Benchmarking against FTIR Ø Hollow waveguide integration **Ø** Prospects





# **Scientific Drivers**

### Implications on the next generation of EO instruments



#### The Challenges of the Atmosphere

- Challenge 1: Understand and quantify the natural variability and the human-induced changes in the Earth's climate system.
- Challenge 2: Understand, model and forecast atmospheric composition and air quality on adequate temporal and spatial scales, using ground-based and satellite data.
- *Challenge 4:* Observe, monitor and understand the chemistry-dynamics coupling of the stratospheric and upper tropospheric circulations, and the apparent changes in these circulations.



#### Ø Finer geographical coverage

- Local/regional sampling (Air quality Emission Monitoring)
- Global coverage at a finer scale (Climate Feedback)

#### Ø Higher vertical resolution

- Nadir profiling Þ Improved SNR, improved spectral resolution
- Limb sounding Þ Reduced FoV while keeping the SNR (UT/LS)
- **Ø** Improve sensitivity
  - Further trace species like PAN, VOCs, ...

#### ØCompact, light

Low cost, micro-satellites, piggybacking



National Centre for Earth Observation

Centre for

Instrumentation

3



### **Principles of the LHR** Thermal infrared spectro-radiometry



# Advantages of LHR for EO

| Merits                                                   | Figures                                                                                                          | Remote sounding benefits                                                                                                                                            |  |  |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| High sensitivity<br>Shot noise limited                   | <u>NEP = 4.10<sup>-16</sup> W</u><br>(I =10μm - t=1s)<br><u>NESR = 120 nW/cm<sup>-2</sup>.sr.cm<sup>-1</sup></u> | Detection of ultra-low concentration traces<br>High accuracy                                                                                                        |  |  |
| High spectral<br>resolution<br>Set by electronic filters | <u>Resolving power &gt; 10<sup>6</sup></u><br>Resolution down to ~10 MHz<br>Highest in the thermal IR            | Full lineshape resolution<br>Deconvolution of altitudinal information<br>Interference discrimination<br>Usage of spectral micro-windows                             |  |  |
| <b>High spatial resolution</b><br>Coherent FoV           | 10 cm aperture gives<br><u>FoV = 0.13 mrad = 27 arcsec</u><br>卢 ~50 m LEO , ~4km GEO                             | Ultrafine geographical coverage<br>Higher altitude resolution (limb)<br>Less cloud interferences<br>Localized emission before dispersion<br>Local sampling from GEO |  |  |
| Electrical definition of<br>Instrument Lineshape         | Directly measureable to a high<br>level of accuracy                                                              | No ILS artefact<br>ILS stability with sounding configuration                                                                                                        |  |  |
|                                                          |                                                                                                                  |                                                                                                                                                                     |  |  |





### FTIR / LHR Side by Side Comparison Identical resolution 60 MHz and field of view



#### Bruker IFS 125HR - 4m x 2m 2 hours integration

**RAL** Spa

#### Bench top LHR - 1m<sup>2</sup> – 1min acquisition







### Retrieved Profiles Comparison LHR vs FTS



# **Getting LHR to Space**

In space context LHR technology not mature

- Need to get to TRL 7 (In Orbit Demonstration)
- Need to built up space heritage
- Ø Key enablers
  - Reduction in mass and volume
  - Increase robustness, reduce risk
  - Airborne deployment as a first step to space

**Þ** Technological solution: hollow waveguide integration





# Miniaturization / Ruggedization Easing deployment through Hollow Waveguide integration

#### Hollow waveguides in ceramic



Fully integrated optical systems
Compact – Robust – Lightweight
Low cost
Relaxed alignment constraints

**Ø** Requires machining with 1 µm tol.

Example of heterodyne mixing module integrated in Hollow Waveguide

#### HIGHER STABILITY

BETTER HETERODYNE EFFICIENCY



HOLLOWGUIDE LTD





# Active Component Integration Laser & photodiode

# Lasers and photodiodes are semiconductor chips – Small enough for full integration



Engineering HW substrate with 70 dimensional tolerances of ~1  $\mu m$ 







### Concept of Fully Integrated LHR Shoe box size with unprecedented specifications







# Concept of Fully Integrated LHR Shoe box size with unprecedented specifications



|        | Spatial (km) | Spectral (/cm) | Noise | Weight (kg) |
|--------|--------------|----------------|-------|-------------|
| MIPAS  | 3 x 30       | 0.035          | 100   | 330         |
| TES    | 0.5 x 0.5    | 0.06           | 100   | 390         |
| HW-LHR | 0.2 x 0.2    | < 0.01         | 200   | 2           |

# RAL Space

12 NCEO/CEOI conf - Nottingham - 19/09/2012

#### NASA TES on AURA



#### ESA MIPAS on ENVISAT







# In Orbit QC-LHR Demonstrator Example of 3U CubeSat





### Input port

- Collection mirror
- View switcher
- Calibration load







#### Integrated LHR

- Integrated Optics
- QCL
- -Detector
- QCL control
- Detector control

13







#### **Payload control**

- Altitude control system
- Transmission system
- Antenna system
- Power distribution



# **Further Prospects of Miniature LHR**

#### Airborne

#### - Step to space

- UAVs UT/LS dynamics Ozone / water

- HAPs Air quality Street resolution Emission sourcing

#### In Orbit Demo

- CubeSat
- TechDemoSat
- ESA IOD
- Build heritage



#### Ground

Ground networkValidationLower cost





- TRL 9 - Mission Ready
- NanoSat Constellation
- Piggy backing
- GEO GHGs & Emissions Subcity scale
- Planetary





